作者:邵仁榮,劉宇昂,張偉,王駿
作者單位:華東師范大學計算機科學與技術學院
在人工智能迅速發展的今天,深度神經網絡廣泛應用于各個研究領域并取得了巨大的成功,但也同樣面臨著諸多挑戰.
首先,為了解決復雜的問題和提高模型的訓練效果,模型的網絡結構逐漸被設計得深而復雜,難以 適應移動計算發展對低資源、低功耗的需求.知識蒸餾最初作為一種從大型教師模型向淺層學生模型遷移知識、提 升性能的學習范式被用于模型壓縮.然而隨著知識蒸餾的發展,其教師學生的架構作為一種特殊的遷移學習方式,演化出了豐富多樣的變體和架構,并被逐漸擴展到各種深度學習任務和場景中,包括計算機視覺、自然語言處理、推薦系統等等.
另外,通過神經網絡模型之間遷移知識的學習方式,可以聯結跨模態或跨域的學習任務,避免知識遺忘;還能實現模型和數據的分離,達到保護隱私數據的目的.知識蒸餾在人工智能各個領域發揮著越來越重要 的作用,是解決很多實際問題的一種通用手段.
本文將近些年來知識蒸餾的主要研究成果進行梳理并加以總結,分析該領域所面臨的挑戰,詳細闡述知識蒸餾的學習框架,從多種分類角度對知識蒸餾的相關工作進行對比和分析, 介紹了主要的應用場景,在最后對未來的發展趨勢提出了見解。
責任編輯:宮在芹